Pruebas de la transferencia horizontal de ADN transgénico
A menudo se sostiene que el ADN transgénico, una vez incorporado al organismo transgénico, es tan estable como el ADN del propio organismo. Pero hay tanto pruebas directas como indirectas contra esta suposición. El ADN transgénico tiene mayor probabilidad de extenderse, y se ha comprobado que se extiende mediante transferencia genética horizontal.
Las líneas transgénicas son notoriamente inestables y a menudo no se reproducen verdaderamente (33). Existe una falta de datos moleculares que documenten la estabilidad estructural del ADN transgénico, tanto en su incorporación al genoma como en su disposición en los genes, en las generaciones sucesivas. El cambio, los transgenes pueden estar callados en las generaciones subsecuentes o que se pierdan totalmente (34).
Se encontró que un gen tolerante al herbicida, introducido en Arabidopsis por medio de un vector, tenía hasta un 30% más de probabilidades de liberarse y extenderse, frente al mismo gen obtenido por mutagénesis (35). Una vía por la que esto puede ocurrir es mediante la transferencia secundaria horizontal de genes por los insectos que acuden a las plantas para recoger el polen y el néctar (36). El descubrimiento muestra que el polen puede transferir el ADN transgénico a bacterias presentes en las larvas de la abejas.
La transferencia horizontal secundaria de transgenes y genes resistentes a los antibióticos de las plantas modificadas genéticamente al suelo, ls bacterias y los hongos, ha sido documentada en el laboratorio. La transferencia a hongos se consiguió simplemente por co-cultivación (37), mientras que la transferencia a bacterias se consiguió aislando de nuevo el ADN transgénico o el ADN transgénico total de la planta (38), La transferencia de un gen resistente a la kanamicina (http://es.wikipedia.org/wiki/Kanamicina=) a la bacteria presente en el suelo Acinetobacter fue conseguida usando el ADN total de la hoja de una variedad de plantas transgénicas: Solanum tuberosum (patata), Nicotina tabaco (tabaco), Beta vulgaris ( remolacha azucarera); Brassica napus (colza) y Lucopersicon esculentum (tomate) (39). Se considera que aproximadamente 2500 copias del gen resistente a la kanamicina son suficientes para modificar con éxito una bacteria, a pesar del hecho de que hay 6 millones de veces más de ADN presente en la planta. Una sola planta tiene 2,5 billones de células, suficiente para transformar mil millones de bacterias.
A pesar del título engañoso en una de las publicaciones (40), una frecuencia de transferencia de genes del orden de 5,8 x 10-2 por bacteria fue demostrada en condiciones óptimas. Pero entonces los autores se pusieron a calcular una frecuencia de transferencia muy baja, del orden de 2 x 10-17, en “condiciones naturales extrapoladas”, suponiendo que los diferentes factores actuasen de modo independiente. Las condiciones naturales, sin embargo, son en gran medida desconocidas e imprevisibles, y hasta los propios autores admiten unos efectos sinérgicos que no pueden olvidarse. El ADN transgénico libre está disponible en el acto en las rizosfera alrededor de las raíces de la planta, que también es un punto caliente del entorno para la transferencia de genes (41). Otros trabajos han encontrado pruebas de la que la transferencia horizontal de genes resistentes a la kanamicina al ADN del Acinetobactor, resultados positivos obtenidos usando sólo 100 ml de la hoja de la planta homogeneizada (42).
Los defensores de la Biotecnología insisten todavía que sólo porque la transferencia horizontal de genes ocurre en el laboratorio no significa que esto pueda ocurrir en la naturaleza. Sin embargo, hay pruebas que sugieren que puede ocurrir en la naturaleza. En primer lugar, el material genético liberado por los organismos muertos y por las células vivas, se encuentra de forma persistente en todos los ambientes, y no se divide tan rápidamente como se había supuesto. Queda retenido en la arcilla, en la arena y en el humus, manteniendo su capacidad de infectar (modificar) una amplia variedad de microorganismos presentes en el suelo (43). La modificación de bacterias del suelo por el ADN adsorbido en la arcilla, arenas y humus, han sido confirmadas en experimentos (44).