Conclusión
La transferencia horizontal de genes es un fenómeno comprobado. Esto ha ocurrido en nuestro pasado evolutivo y continúa hoy en día. Todos los signos indican que la transferencia horizontal de genes en un proceso regulado, limitado por las barreras existentes entre las especies y por mecanismos que se deterioran e inactivan por la presencia de material genético extraño. Lamentablemente, la ingeniería genética ha creado una enorme variedad de construcciones artificiales diseñadas para cruzar las barreras entre las especies e invadir todos los genomas. Aunque las construcciones básicas sean las mismas para todas las aplicaciones, algunas de las más peligrosas pueden proceder de la eliminación de los desechos confinados en los organismos transgénicos (50). Esto incluye construcciones que contienen genes del cáncer y de células utilizadas en las investigaciones de laboratorios de medicinas contra el cáncer, y que se encuentran en la fase de desarrollo, bacterias con genes de gran virulencia y virus de laboratorios de patologías. Resumiendo, la biosfera está siendo expuesta a todas clase de nuevas construcciones y combinaciones de genes que no han existido antes en la naturaleza, y que nunca podrían haberlo hecho, gracias a la labor de la Ingeniería Genética.
Hay una necesidad urgente de establecer un regular eficaz, en primera instancia, que prevenga de fugas y liberaciones de estas peligrosas construcciones al ambiente, y considerar luego si estos experimentos no debieran de estar permitidos en absoluto.
Referencias
1.Thanks to Dr. Beatrix Tappeser, Institute for Applied Ecology, Postfach 6226, D-79038, Freiburg, forthis information. See also Barnett, A. (2000). GM genes ‘jump species barrier’ The Observer, May 28,2000.2.See Stephenson, J.R., and Warnes, A. (1996). Release of genetically-modified miroorganisms into theenvironment. J. Chem. Tech. Biotech. 65, 5-16; Harding, K. (1996). The potential for horizontal genetransfer within the environment. Agro-Food-Industry Hi-Tech July/August, 31-35; Ho, M.W. (1996). Arecurrent transgenic technologies safe? In Virgin, I. and Frederick R.J., eds. Biosafety Capacity Building,pp. 75-80, Stockholm Environment Institute, Stockholm; Traavik, T. (1999). Too Early May be TooLate, Report for the Directorate for Nature Research, Trondheim, Norway.3.See http://www.i-sis.org4.See Ho, M.W. (1998, 1999). Genetic Engineering Dream or Nightmare? The Brave New World of BadScience and Big Business. Gateway, Gill & Macmillan, Dublin; Ho, M.W., Traavik, T., Olsvik, R.,Tappeser, B., Howard, V., von Weizsacker, C. and McGavin, G. (1998). Gene Technology and GeneEcology of Infectious Diseases. Microbial Ecology in Health and Disease 10, 33-59.5.See Ho et al, 1998 (note 4) and references therein.6.See Lorenz, M.G. and Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformationin the environment. Microbiol. Rev. 58, 563-602.7.See Ho,1998, 1999 (note 4; Ho, et al, 1998 (note 4).8.See Ho, M.W., Ryan, A., Cummins, J. and Traavik, T. (2000a). Unregulated Hazards: ‘Naked’ and‘Free’ Nucleic Acids, ISIS & TWN Report, London and Penang. http://www.i-sis.org.9.Grillot-Courvalin, C., Goussand, S., Huetz, F., Ojcius, D.M. and Courvalin, P. (1998). Functional genetransfer from intracellular bacteria to mammalian cells. Nature Biotechnology 16, 862-866.10.See Nielsen, K.M., Bones, A.M., Smalla, K. and van Elsas, J.D. (1998). Horizontal gene transfer fromtransgenic plants to terrestrial bacteria – a rare event? FEMS Microbiology Reviews 22, 79-103.11.See Ho et al, 2000a (note 9)12.See Doolittle, W.F. (1999). Lateral genomics. Trends Cell Biol 9, 5-8.13.See Jain, R., Rivera, M.C. and Lake, J.A. (1999). Horizontal gene transfer among genomes: Thecomplexity hypothesis. Proc. Natl. Acad. Sci. USA 96, 3801-3806; Shapiro, J. (1997). Genomeorganization, natural genetic engineering and adaptive mutation. TIG 13, 98-104; Ho, 1998,1999 (note 4).14.See Ho et al, 1998 (note 4) for references.15.See Ho et al, 2000 (note 8)16.Reviewed in Ho et al, 1998 ( note 4).17.Reviewed in Ho, 1998, 1999 (note 4) Chapter on “The mutable gene and the human condition”.18.See Ho et al, 2000 (note 9) and references therein.19.See Ho, M.W. (1999). Special Safety Concerns of Transgenic Agriculture and Related Issues BriefingPaper for Minister of State for the Environment, The Rt Hon Michael Meacherhttp://www.i-sis.org20.See Old, R.W. and Primrose, S.B. (1994). Principles of Gene Manipulation, 5th ed. Blackwell Science,Oxford; Kumpatla, S.P., Chandrasekharan, M.B., Iuer, L.M., Li, G. and Hall, T.c. (1998). Genomeintruder scanning and modulation systems and transgene silencing. Trends in Plant Sciences 3, 96-104.21.See Kohli, A., Griffiths, S., Palacios, N., Twyman, R.M., Vain, P., Laurie, D.A. and Christou, P. (1999).Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals arecombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomologymediated recombination. The Plant Journal 17, 591-601.22.Finnegan, J. and McElroy, D. (1994). Transgene inactivation, plants fight back! Bio/Technology 12,883-8.23.Ho, M.W., Ryan, A. and Cummins, J. (1999). The cauliflower mosaic viral promoter – a recipe fordisaster? Microbial Ecology in Health and Disease 11, 194-197; Ho, M.W., Ryan, A. and Cummins, J.(2000). Hazards of transgenic plants containing the cauliflower mosaic viral promoter. Microbial Ecologyin Health and Disease (in press).24.Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. (2000). Engineering theprovitamin A (-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287,303-305; see also Ho, M.W. (2000). The Golden Rice – An Exercise in How Not to Do Science. ISISSustainable Science Audit #1 http://www.i-sis.org25.Xiong, Y. and Eikbush, T. (1990). Origin and evolution of retroelements based upon the reversetransriptase sequences. The Embo Journal 9, 3363-72.26.Assad, F.F. and Signer, E.R. (1990). Cauliflower mosaic virus P35S promoter activity in E. coli. Mol.Gen. Genet. 223, 517-20.27.Ballas,N., Broido, S., Soreq, H., and Loyter, A. (1989). Efficient functioning of plant promoters andpoly(A) sites in Xenopus oocytes Nucl Acids Res 17, 7891-903; Burke, C, Yu X.B., Marchitelli, L..,Davis, E.A., Ackerman, S. (1990). Transcription factor IIA of wheat and human function similarly withplant and animal viral promoters. Nucleic Acids Res 18, 3611-20.28.Reviewed in Ho, et al, 2000 (note 24).29.Maiss, E., Timpe,U., and Brisske-Rode, A. (1992). Infectious in vivo transcripts of a plumpox potyvirusfull lenth c-DNA clone containig the cauliflower mosaic virus 35-S RNA promoter J. Gen. Virol. 73,709-13; Meyer, M and Dessens, J. (1997). 35S promoter driven cDNA of barley mild mosaic virusRNA-1 and RNA-2 are infectious in barley plants. J. Gen. Viol. 78, 147-51.30.Ndowora, T., Dahal, G., LaFleur, D., Harper, G., Hull, R., Olszerski, N.E. and Lockhart, B. (1999).
* Mae-Wan Ho, Institute of Science in Society and Department of Biological Sciences,Open University, Walton Hall, Milton Keynes, MK7 6AA, UK